
CPS122 - OBJECT-ORIENTED SOFTWARE DEVELOPMENT

Individual Programming Project 2

Reading Quiz: Monday, February 15, at the start of class
Preliminary Milestone Due: Monday, February 22, at the start of class
Complete Project Due: Tuesday, March 2, at the end of lab

Purpose: To give you experience developing a complete system that uses multiple classes

Introduction

It is a common sight in locations like hotel lobbies around the world to see several clocks 
displayed showing the time in different places - like in this picture taken in the lobby of a hotel in 
Lanzhou, China showing time in Moscow, New York, Australia and other places:

For this project, you will be using the clock classes you developed in Lab 5 to produce a similar 
display.  Unless you request otherwise, your project will be posted on the department web server, 
so that you can show off your work to friends and family during spring break.  (You will also 
want to look at similar projects from previous years to get ideas - though you should bear in mind 
that the project requirements in some of the previous years were significantly different!) 

Requirements

1. Create a display of multiple clocks showing the current time in different locations.  The number and 
placement of the clocks is up to you (use your creativity, and look at what others have done for ideas).  
As a minimum, the following must be true.

• The display must include 4 or more clocks, each displaying the current time in a different time zone.
• Each clock must be labelled appropriately (e.g the name of its time zone or the name of a prominent 
city in that time zone).  (The label can be below the clock or at some other position.)
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• The clocks must be of two or more different sizes.  The largest clock must be at least twice as big as 
the smallest.  (Of course, all the features of the clocks must be scaled appropriately to their size.)  You 
will probably want the larger clock to display the local time zone (Eastern), though you could use it to 
display some other zone if you prefer (e.g. the zone of your home town.)

2. Make the overall appearance of the clocks aesthetically pleasing, by incorporating some or all 
of the following improvements.

• “hash-marks” around the face of the clock:
   • simplest - at 12, 3, 6, and 9
   • better: at every hour
   • best: more prominent marks at the hour locations, with 4 smaller marks at the minute
      locations in between
• numbers correctly positioned around the face of the clock:
   • simplest - at 12, 3, 6, and 9
   • better: at every hour
   (Note: correct positioning that scales with clock size is important!)
• hour and minute hands that are not simply straight lines - the second hand can continue to be 
  a line.
   • simplest: balls at clock center and ends of the hands
   • better: draw the hand as a polygon or use arcs to produce a curved effect
• time displayed in both digital and analog form, including "AM" or "PM" - perhaps by adding
  the digital time to the  label for the clock
• make good use of color to improve the overall appearance of the page the individual clock
  faces.
• lots of other possibilities - see previous projects by other students for ideas

The following illustrates what several (but by no means all!) of these improvements might 
look like - but don't feel you have to make things look just like this!
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Reading Quiz and Milestone

Waiting until the last minute to start this project is definitely a very bad idea1  For this reason,  
there will be a reading quiz and a preliminary milestones due as noted above to help you get 
working on the project early.  

1. Reading quiz: based on the implementation notes below. 

2. Milestone - submit a version of the project that displays at least four labelled clocks correctly 
displaying the time in different time zones.  (Aesthetic appeal is not important at this point) 

Evaluation

Credit will be based on the following:

1. Correct operation and neat, aesthetically pleasing appearance.  (maximum 75 points) 
2. Use of good methodology, as taught in class, including  use of comments,  choice of names,  

appropriate use of local variables, good use of white space to aid readability, and clear overall 
approach.  It is particularly important to make good use of symbolic constants. (Maximum of 
10 points)

3. A reading quiz based on the implementation notes below (6 points)
4. Completing the preliminary milestone by the milestone due date.  (Penalty of 10 points if not 

done on time; lesser penalty if partially done.  Credit for the actual code will be included in 
the final grade for the project.)

5. Following the submission directions below exactly. (5 points)

There is no provision for extra credit on this project.

A blank project cover sheet is attached and should be stapled to the front of the final submission 
of your project.

Implementation Notes:

1. To start the project:

a.  Copy the ClockProject folder from the common volume to your server volume.  This 
folder contains a NetBeans project with a “starter” version of the main class (Project).

b. Copy the src/clock folder from the Clock folder you used for lab 5 to the src folder of 
the project folder.  (You can copy a folder from one place to another on a Macintosh by 
holding down the option key while dragging the folder to its destination.)  When you 
have done this correctly, the project window will look like this when you open the project 
in NetBeans and click the disclosure triangles.
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c. At this point, it should be possible to run the project.  You should see a clock like the one 
you created in lab, correctly displaying the time in the Eastern time zone.

2. The main class  (Project) contains code that will allow your project to run either in NetBeans 
or as an applet on the web.    You will need to add code to this class to create your clocks

a. All the code you add to the Project class will go in one of two places:

• At the point indicated in the start() method.
• Symbolic constant declarations at the end of the class

b. In addition, you will may need to change the declarations of the symbolic constants 
APPLICATION_HEIGHT and APPLICATION_WIDTH  if you need more screen space to work with.
If you do this, be sure to change the boundaries specified in Project.html 
as well!

c. You may also want to change the value of the constant BACKGROUND_COLOR to better fit the 
way you have set up your clocks.  Feel free to do this.

d. Be sure to delete the comments and examples you are told to delete!  Leaving any of 
these in the project you turn in will result in a point reduction!

e. Do not change anything else in the Project class.

f. Of course, may also need to make changes to the classes representing the clock and its 
face, hands, and label line - but see 8b below before changing the Clock class.

3. When creating a clock, its time zone is specified by giving an offset relative to Greenwich 
Mean time (GMT).  This will be a string having the form GMT+hh:mm or GMT-hh:mm. For 
example, Eastern Standard Time is  GMT-05:00, meaning that Eastern time is 5 hours earlier 
than Greenwich Mean Time.  (In most cases, the minutes part of the specifier is not needed 
and can be omitted, but some time zones such as Newfoundland need it.)
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4. The coordinate system used for the Java graphic system is like that used in CPS121 - i.e. the 
x-axis is horizontal and the y-axis is vertical, and (0,0) is the top left corner of the screen, 
with x increasing going right and y increasing going down.  

5. The java.awt.Graphics class has a number of methods that you will need when drawing 
improved versions of the parts of your clock. 

a. For most shapes, there is a method whose name is of the form draw____ draw and a 
method whose name is of the form fill____. The “draw” method draws the outline of the 
shape, while the “fill” method draws a filled in shape.  For example, suppose you used 
fillOval() instead of drawOval() in the Face class.  Then your clock would look like this:

	
 	
 	


b. You can use both of these methods together to draw both a frame and an outline (using 
different colors for each, of course.)  For example, if you used code like this in your Face class:

graphics.setColor(color);
graphics.fillOval(leftX, upperY, faceDiameter, faceDiameter);
graphics.setColor(Color.BLACK);
graphics.drawOval(leftX, upperY, faceDiameter, faceDiameter);

Your clock would look like this:

	
 	
 	


c. It is also possible to draw other shapes on top of each other - e.g. a ring can be drawn by 
drawing a larger circle and then a smaller circle.

d. Important: if you draw two things at the same place, the one you draw last will be on 
top.  Since drawing is opaque, that means it will hide anything underneath it.  So, in the 
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example above, if  you drew the filled oval after you drew the outline, the filled oval 
would be the only thing you would see!

6. To improve the appearance of the hour and minute hands, you will probably want to create a 
new FancyHand class, which you use for the hour and minute hands, while continuing to use the 
Hand class  you developed in lab for the second hand.  Of course,  you will also need to change 
the constructor of the Clock class to use your new class for the hour and minute hands.

7. There are several things you need to keep in mind to produce aesthetically pleasing results:

a. If you display 12  hour markers around the face of the clock, the centers of the numerals 
should be located at 30 degree intervals around an invisible circle perhaps 10%-15% larger 
than the face circle itself.  The drawString() method of the Graphics class requires you to 
specify the coordinate of the lower left corner of the string - which will require subtracting 
off half the width of the string from the calculated x coordinate of the center and adding 
half the height of the string to the calculated y coordinate of the center.  See the draw() 
method of class LabelLine for how to get the width and height of a displayed string.

b. When showing digital time, recall that the convention is to use two digits for minutes and 
seconds even if only one is necessary - e.g. at time like 1:05:02 PM is represented this 
way, rather than 1:5:2.  

c. Also, recall that in digital time, while the internal representation of the hour ranges from 
0 .. 23,  the hours displayed go 12, 1, 2, 3 ... AM,  12, 1, 2, 3 ... PM.

8. The clock package that you copy from the lab will also contain the ClockTester class.  You 
can use this to test correct operation of your clocks, since the project only displays the current 
time and you may want to be able to test displaying specific times.  (And, in any case, I will 
want to do this when testing your final submission!)

a. You can use this class for testing your clock by making it the main class for your project.  
Here's how:
• Control-click on the Project itself, and choose Properties at the bottom of the pop-up menu.
• Select the Run panel in the window that is displayed.
• Click the Browse button next to the Main class field
• Choose clock.ClockTester
• To return to running your project as the main class, follow the same process but choose 
project.Project.

b. Therefore, be sure to not change the parameters of the Clock class constructor or its 
setTime(), setCurrentTime() and start() methods, since the tester makes use of these.  
(The ClockTester class must still compile correctly).

9. Your project is configured to let you run your program as an application, but you should also 
test it when run as an applet by opening the file Project.html in a web browser.  (You can 
drag this file to the appropriate icon to launch that browser.)  On MacIntosh's Safari has 
problems with applets located on disk, and Chrome seem to have a problem with flicker when 
drawing this applet so you may get the best results with Firefox.
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Final Submission Directions - Please follow exactly!

Recall that the project is due at the end of the lab period.  The lab instructor will NOT stay later than 
the end of the lab period.   The project will be considered late if it is not finished by this time.  (Of 
course, you can always turn the project in earlier).   A printed version must either be turned in at this 
time, or slid under the door of my office, and the project must be on the server  by this time,

1. If your project requires a screen area bigger than the default value of 800 x 600, change the values 

specified in both Project.html and Project.java.  (The values in the .html file will be used when 
running your program as an applet.)

2. Be sure comments you were instructed to delete are deleted - and that you have included appropriate 
comments of your own.

3. Be sure your variables and constants have appropriate names - e.g. DEMO_LEFT_X is not an 
appropriate name for a constant in your final program!

4. After making all the changes to your code you intend to make, use the "Clean and Build Project" 
option in NetBeans (in the Run menu or using the toolbar icon) to produce a clean executable  of 
your project (the file ClockProject.jar in the dist folder in your project.)   If you make any changes to 
your code after doing this, you must repeat this step.  The version of your program that will be tested 
(and that will determine your grade) will be this executable.

5. Test your completed program by running Project.html in a browser (drag it to a browser.)  This is 
what someone will see if accessing your project over the web. 

6. Put a copy of the complete project folder in the drop box on the server.  Be sure to do this even if 
you are developing the project on your own computer.

7. What you turn in must include the following, neatly stapled together

• The coversheet below
• Printout  of the java sources for the classes you wrote or modified.  You just need to turn in a single 
program, reflecting your finished product.  However, you will probably find it wise to develop your 
improvements incrementally, and to save a copy of working code before moving on to the next 
feature in the case of catastrophic error. Be sure you have included a suitable prologue comment in 
each class, and have deleted unnecessary lines in Project.java.

8. The professor will post  completed projects on the department web site during the break.  However, 
if for some reason you prefer not to have your project posted, please let the professor know by email.

Unless you specifically request otherwise, a copy of your finished project will be posted on 
the department server for others to enjoy!
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CPS122 - OBJECT-ORIENTED SOFTWARE DEVELOPMENT - INDIVIDUAL PROJECT 2

Author _____________________________________________________________________

Operation: Basic Requirements Met 	
 (max 50 points)	
 _____

4 or more clocks	
 ❑ Yes	
 ❑ Partially	
 ❑ No
Different time zones, labeled appropriately	
 ❑ Yes	
 ❑ Partially	
 ❑ No
Correct analog times displayed	
 ❑ Yes	
 ❑ Partially	
 ❑ No
Different sizes - largest at least 	
 ❑ Yes	
 ❑ Partially	
 ❑ No
     two times smallest
Overall scales correctly	
 ❑ Yes	
 ❑ Partially	
 ❑ No

"Hash marks"	
 (max 7 points)	
 _____
❑ Not attempted 	
 ❑ 3, 6, 9, 12	
 ❑ Every hour/min ❑ Min&hours 	
 ❑ Positioned/scaled properly
	
 	
     not different           differentiated

Numbers	
 (max 5 points)	
 _____
❑ Not attempted 	
 ❑ 3, 6, 9, 12	
 ❑ Every hour	
 	
 	
 ❑ Positioned/scaled properly

Hands	
 (max 7 points)	
 _____
❑ Not attempted 	
 ❑ Balls or other  ❑ Polygons	
 ❑ Arcs or other	
 ❑ Positioned/scaled properly
	
     simple	
 	
      challenging

Digital Time	
 (max 5 points)	
 _____
❑ Not attempted 	
 ❑ Partially correct	
 ❑ Correct	
 	
 ❑ Positioned  properly	

Minutes, seconds < 10 handled correctly	
 ❑ Yes	
 	
 ❑ No
Midnight, noon handled correctly	
 ❑ Yes	
 	
 ❑ No

Use of Color and other Aesthetic Considerations	
 (max 5 points)	
 _____
❑ None 	
 ❑ Colors garish	
 ❑ Nice color	
 ❑ Other

Operation Total (Max 79) 	
 	
 	
 	
 	
 	
 _________
	
 	
 	


Methodology Expectations:
• All methods have appropriate prologue comments and parameter tags that make the purpose of 

each parameter clear.
• Variable names clearly describe the item they name and follow OO naming conventions.
• Local variables are used where needed.
• Symbolic constants are used where needed
• Whitespace (indentation and blank lines) follows a consistent convention and makes the overall 

structure of the program clear by enhancing its readability.
• Overall structure of code is clear.
	
 	
 	


Methodology Expectations Met (Max 10)	
 	
 	
 	
 	
 	
 _________
	
 	
 	

Reading Quiz	
(Max 6)	
 	
 	
 	
 	
 	
 	
 	
 _________

Submission Directions Followed Exactly (0 or 5 points)	
 	
 	
 	
 _________

OVERALL TOTAL (Max 100)	
 	
 	
 	
 	
 	
 _________
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